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University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK

Received 7 April 1975, in final form 18 July 1975

Abstract. In a previous paper, a standard transformation was proposed for expressing
Cartesian tensors and tensor expressions in spherical form, and vice versa. In this paper
some properties of the transformation coefficients are derived. A recursion formula is
given, which provides a simple means of generating the coefficients from those of the next
rank below. The coefficients {a; . .. @,}f; . . . j,; m) are tabulated for n <4, m =0 and for
n=3, j,=0. Another recursion formula gives the coefficients for m # 0 in terms of those
for m=0. A graphical method is used to derive formulae for manipulating the coefficients,
and formulae are given for handling products of tensors, contracted or uncontracted.

1. Introduction

Itis well-known that a Cartesian tensor of rank greater than one can be reduced into
several spherical components (e.g. Fano and Racah 1959). Depending on the nature of
acaleulation, one or the other of these forms may be more suitable, and it is therefore
toavenient to have a standard transformation for converting a tensor, or a tensor
expression, from one form to the other. In a previous paper (Stone 1975) Cartesian-
sherical (cs) transformation coefficients were defined by considering a ‘polyadic’
A.B.,...Z, . Bytransforming each of the vectors in this expression to spherical form,
and then coupling the spherical vectors together from left to right, one arrives at a
reoursive definition for the transformation coefficient:

... jmy= L {ar- . aunlis e uors XL MYy I/ m o),
(1.1)

:g:; {i-11m'm")j,m) is a Clebsch-Gordan coefficient and {e|1; m) is the unitary

;1)  [1;0) J1;-1)

(x| —Viik 0 ik

X . (1.2)
ol 2K 0 5K
(z[- \0 ix 0

Héref kisa thise factor, which is 1 if Fano and Racah’s (1959) phase convention is
»OF ~ifor Condon and Shortley’s (1935). The spherical components T}, . .m
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486 A J Stone

of spherical rank j, of a Cartesian tensor T, ., of Cartesian rank n are thep givenby

le...jn;m= Z Tax...a,.<a1 LR an[jl . jn; m), (13)
and conversely
Tou...a,.: le...in;m<jl .. jn; m,al ... an): (14)
Jreejnim
where
Greaymlay ... a)=(ay...a.lj;...j.; m)¥, (L)

so that the transformation is unitary. The subscripts ji, j,...j._; are (sometimes)
required to distinguish between different spherical tensors with the same j, ; they can be
dropped where no ambiguity results. j; is always 1, but is included in the notation for
completeness. and for convenience in some formulae.

Some applications of this transformation have been suggested elsewhere (Stone
1975), and in this paper I shall examine some of its mathematical properties. In § 2, two
recurrence relations’ are derived which make the computation of the coefficients
somewhat simpler than the direct use of (1.1), while in § 3 a graphical method is
described for handling the coefficients:: This is used in § 4 to derive some formulae for
manipulating the coefficients, particularly in relation to products of tensors, contracted
or uncontracted. The need for these can be seen by considering a tensor quantity such
as C, = A,p,Bg,~ Thisisa vector, and transforms into a spherical tensor C,,, of rank 1;
while if we consider the special case where A and B are symmetric and traceless, they
transform into spherical tensors As,, and B,,,»of ranks 3 and 2 respectively. However,
the tensor C,, is not identical with the tensor (Az X By)1,, =(32m'm"|1m)A;pBam,
obtained by coupling As,, and B,,,- together, and attempts to make these expressions
identical would remove the unitarity of the transformation. The results of § 4 show that
in fact

Clm = (%)I/Z(AS X B2)1m-

Previous workers (Coope ez al 1965, Coope and Snider 1970, Coope 1970)
investigated the relationship between Cartesian tensors and their irreducible spherical
components, but preferred to work in Cartesian forms throughout. If itis requireq to
follow their approach of projecting out of a Cartesian tensor A, _, another Cartesia
tensor (of the same rank) corresponding to a given spherical component, this can be
achieved using the transformation described here:

AL=¥ % AgeplBro Balit . jusm¥is .. s mlay . .. et (18

I;]'ﬂ:

an

Indeed the j, component can be embedded in a Cartesian tensor of any rank
Geraw =2 L AnefBr- . Bulir- - dui m)iifa- I ma ... ol

where 5 ... j., can be chosen in several ways, in general, provided that ju=he i‘g
example is the well-known relationship between the antisymmetric part of a see
rank tensor and a vector:

3
A=Y %3 Al BiBl11; m)(1; mla) = — (k/NDeapipsApr U )



Properties of Cartesian-spherical transformation coefficients 487

3, Recurrence relations

The definition (1.1) is somewhat inconvenient to use. A little manipulation leads to two
or any m from (ai...elji...j;0), while ~ the second - expresses
(.. Aparlf - - - Jnr1 0)_ in terms of the (a; ... a,lj; - - . j.; O).

Copsider the expression ‘

{in(in+1)—m(m+ 1)]1/2<a1 Tt an'lanljl .. -jn—ljn; m +1)

= Y ey Auilfr e Jm1; M)l m")

X [ju(ut )= mm+ DI (o L' m"|jm+ 1)

= L (ar--tpoli oo faess M el m")

X Aljn-1{fn-rt D) —m'(m’— 1)]1/2<jn-;1m’" 1m"|jam)
H1. 2= m"(m" = D)Xy Im'm" = 1 m)}. @.1)
Byreplacing m’' by m’+1 in the first term and m” by m”+1 in the second, we get

L ey ailfi e s M+ DG + D —m'(m' + 1)]1/2<a,.|1; m")

X(juor1m'm"jum) + Z {aiy...oplis. .. }',;_;; m'Xay|1; m"+1)
X[2—m"(m"+ 1], Lm' m"|jsm). 2.2)

Nowthe second term of this expression is like the definition of the cs coefficient except
that {a,|1; m") has been replaced by (a,|1; m"+1)[2—m"(m"+1)]"/% Let us write this
last expression as

L (e Jt; "+ D[2— m™” (m" + 1)]/28, e

= Z (anll; m" + 1)[2_mm(mm+1)]1/2<1; m"’ll; mn)

={a,|T]1; m"), (2.3)

¥here . is the usual angular momentum shift operator. It is convenient to introduce
2w operators $4), defined by

IXa|1; my= 8o, [1; m). (2.4)
¥ could be defined similarly but will not be needed.) Using (1.2) in the form

(al1; 0) =ik,

(2.5)
{l1; £1) = Fi(2, £if.),
Were £, 5, and Z, are unit vectors along the x, y and z axes, it is a straightforward
Tatter to show that

}3)50& = Z iEabcéar: (2 '6)

Witre o = ¢ o ¥;b,c=x,y,orz;and g, g, are defined by £. = §, +i ¥, The efect of
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$% on expressions such as 8, is now easily found:
1 — ) A A . a
cgfz )acuaz - ja Z bou.baz - Z lea.bccalbaz, (2
b be '7)

and one finds also that
£+ £21801. =0,

2 3
[+ 52+ I nsaras = 0.

One should perhaps emphasize that $ is not a respectable quantum mechanicy

operator but merely a convenient mathematical shorthand.
Returning to (2.2), we now treat the first term in the same way as ihe initia)
expression of (2.1). By repetition we eventually obtain a sum of terms:

298

[t D=m(m=D]"*a; ... anlis .. . ju; m£1)
=L e alis s m) = Fuler - anliy s m), 29)

where
n
}t;—_ Z jg)
r=1

As an example of this formula we may obtain the (aB|12; m), m >0, from (a8|12;0),
which is shown below to be equal to —(k2/v! 6)[32,2 —8.5]. We have

V6(aB|12; 1y = (F+ I~ k*/V6) 32,25 — 8,6]
= (= K?/NO)[ = 3(%a +ifa)2p =354 (% +ifp)],

so that

(aBl12; 1) = (k*/2)[£atp + Safip +i(Pudp + 2ap)]. (210
Similarly

Vapl12;2) = (k*/2)[ ~ 2. +ifu)(Es +i9)],
so that

(@Bl12;2) = — (k*/2)[£aks — Dufp +i(Rads + Pus)]- @

Now we seek a similar formula relating (ay...auli..-ja30) and
{a;...a,lj;-..jn;0). From (1.1) we have '

@y apllis .o a3 =2 Aay ... aulj; . .. jo; m}L|1; —m)j, 1m—m|j0)- 21

We can use (2.9) in the terms with m # 0, insert the expressions (2.5) for the {ﬁl; mh
and substitute algebraic expressions for the Clebsch-Gordan coefficients t0 g1V¢
(... anllis- .. juf50)
= K{ai,in*'l[(jn +1)(2]n + 1)]_1/2[i(jn + 1)24' + ylgx _x‘[jy]
. s -1/2
+ ai,in—l[in(zju + 1)]—1/2 [_ ijni( + ?Jx - f{fy] +i3j,j,[ln(.’n + 1)]

)
X {88, + 9.8, Her ... alis - - - o3 O @
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ions for the (@1 ... alf; ... j.; 0) for n<4 and for n=35, js=0 have been

derived using this formula, and checked against the results of a computer program
whichevaluates the coefficients directly using (1.1). The results are given in table 1. For

Table 1.

Caresian rank 1:
(a[l; 0= ikZ,

Cartesian rank 2:
(aBl10:0)=(x"/3)8g

(811 0= —(i6* /Y2 £aFp — Jckis]
{uB12;0)= —(k*/NO)[32o2p ~825]

Cantesian rank 3:

(@By1101; 0)=(ix>/V3)8p2,

(@B1}110;0) = ~(<*/V6)€ngy

(aBrittl; 0 =(ie®/ 2568 0y — 5ubs,,)

(@B112;00= 127234, 555, ~ 3Puisl, — Eugy]

(aB121; 00 = =60 %k 28,52, — 32480y —35,55,]

(68122 0) = (°/ D uSeFy — ZaSily + SataFy ~ Fatat,)

(6B11123; 0= — 107 ik[5 5,258, — 8,52, ~ S5By ~ SaBs,)

Cantesian rank 4:

(e815]1010; 0} =33,55,5

(aBI1011; 0) = —67/2%i8,,5[£,95 ~ 5, %5]

(eB19[1012;0) = — 187"/%8,,5[3£, 2, 5,]

(a)1101;0) = — 6™V %ie 5, 2,

(eB3(1110; 0) = 127"/7[5, 355 — 6,05,]

(aB)1111; 0) = 872,55~ Puks)Bys —e€ 65y

(oBB(1112; 0) =241, (35,85 —B,5) — By (3355 ~8g5)]

(OBA11121; 00 = ~ 12072 3¢, 0%, — 2espy 25 +3(Eafs — Fufs)Brs]

I 0)= 87 2,2, 85 a2, s (Rafla = Fue)Brf = Fifo)]

(oB1811123; 0= 20~/2 (., 5, ~ Faka 52,25 —8,5) ~ €apy s~ €apsty]

(Qﬂ'yB)lZlO; 0=180""7[35, 85— 38505y —28,50,5]

ngf g; - ;2032125::5 (5= )00y Bl =) =30 85~ 58]

iuﬂyauzz > : 0 _1/5..28,,3(:‘12:28 —8y5) =38, (33585 — 85} — 384, (32,25 —8,5)]

w,m; 3>: —40_1/2@«5 (369~ pky) + £ubrs + 85 (Bafy — Puty) + Egtuns]
$0= = 2471280085 — Bup? By ~22ut5B5) — (BuyBas — BuyBsls ~ 22,7, 5gs)

~(BarPus — 5,25 — 2502805

(o898[1223, 0y = 6~1/2i » 5 sa o
’ 3’ 0> =60 zl[(szazs - sas)(xﬁy-y— Yﬁiy) - 2126518 + (52528 - 3&3)@«5"7 - y‘af‘y) - EBGG‘YG]

@B9%}1232. 0 = 91 =
11232, 0)= 210/ (88806 + Suydps + 85,808 = S(BaBpBos + Baf g+ 365 Bos)

+2Bupt, 25+ 8o Zpis +85,2.25)]
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Table 1. continued

(aBy5(1233;0)=120""/%[(55.25 ~ 8ua)( %, 95 — ) + (SZaly — 8y )(Rafs — Jafs) + (5252, -8,
X(£a5 — Jaks)]

(aBy5]1234; 0) = 280"/ *[8,58,5 + 8,555 + Basdpy
—5(8aplyta+ Buypts + Buslply + Brotals  Opsfaty t 8pytats) +358,555 5,

Cartesian rank 5:

(aBye|10110; 0) = — 187 k8, g€ 5

(aPyde|11010; 0) = — 187" ke 5,85

(aByBe|11110; 0) = — 247>kl €ayeBps — €ayeBas — Exysdpe +€pysdae]

(aPyde[11210; 0) = 3607 *k[4€ 5,85 + 3(€ryed p5— € yeBias T € vsd pe— €ayoDae)]
(aByS€[12110; 0y = —360™"/k[48,5€ 3¢ + 3(€yedps T €pyedas — EreOpe — €aysdac)]
(aBy0€|12210; 0) = ~ 120"k [Bas€pye + Brclys + Ops€ave T+ Ope€ars]

n =5 the number of coefficients becomes rather large, but the six scalars are particularly
useful—for example in obtaining spherical averages of tensor properties, which are
conveniently expressed in the form

(Tal...a,.) = BZ (al e anljl .. ]n: m)aj,.OamO(jl . ]rn m]Bl .. ﬁn)T,BL..B,,- (214)

jBm

One can see from these results, as one would expect, that (a; ... a,lj;...j,;0) is
independent of the axis system if j, =0, and also that a coefficient in which one of the
intermediate j, is zero can be written as a product of simpler coefficients:

(ay...a...oljy . jie10fpsy oo oy m)
=<a1 e arljl e jr—lO; O><ar+1 .. an'jl-!-l s jn; m> (215)

A result which is less apparent, but which is easily proved using the diagram notation of
the next section, is that

(a1 e a,,ljl . e j,,-10; 0) = (“ 1)"(anan_1 [ alljn—l e ]2]10; 0> (2'16)

3. Graphical technique

The graphical technique we will use is a simple extension of the one described bY,Bm’k
and Satchler (1968), which is itself a modification of the scheme given by Yusis &
(1962). Brink and Satchler’s technique is based on the representation of the 3/ symbol
by a diagram:

jllrnll
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Thesignon the node gives the order in which the angular momentum symbols are to be
read__oo'uhterclockwise if +, clockwise if —. A line by itself represents a delta
function, while a line with an arrow on it represents a phase factor:

. 'lml

im0 s s

im -rmi : m

L———>_j-— = 3j]-'5m_m' . (— 1)] . (3'2)

Where half-integral angular moments arise, the direction of the arrow is significant, but
in the present work it is immaterial.
The joining of two lines implies that the m values are set equal and summed over, so

that for example

i
jm + - j’ml _ Z < ] jl” j” )( ]-l ]-"I ]-/I >
e \m m" m'J\m' m" m"
" =(2j+1)7"8; 8 mm:- (3.3)

Any distortion of a graph leaves its value unchanged, provided that a change of the
orientation of lines at a node is accompanied by a change of sign at that node.

Let us now extend this notation a little. First, the factor (2j +1)*> which occurs in
many formulae is represented by a solid triangle with its base attached to a line. More
than one factor may occur, while negative powers are represented by attaching the point
of the triangle to the line:

i ’

jm i'm

A =2/ +1)"%6 48 (3.4)
jm j/mr )

—4—=Q2j+ 188 > (3.5)
]m jlml

Y =(2j+1)728,8 - (3.6)

Using this notation we may for example wrife (3.3) as

im .,m, .m .,m’

The Wigner coefficient is now easily represented:
Gmimlim) = (-1 @iy T T )

=(=1) "

(3.8
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Next we need symbols for the basic Cartesian-spherical transformation ( 1.2), and we
shall take

a 1m a * 1m
to represent {e|1; m) and (1; m]a) respectively. The star can be added or removed by
the rule

a =,  1m a Jdm
Pt = <$>—. (39)

K

This corresponds to the equation
kX(1; mlay=(=1)"""(a|l; —m).

A line with two triangles and one star is equal to a line with no triangles:

im x im 1m’ 1m
m 1,>‘1 <l = , (3.10
1 a
* gl B L (3.11)
corresponding to

(17 mlla)(all’ m) = Smm’
and
2 {all; mX1; m|B) =8,

We see that joining two Cartesian lines corresponds to setting the Cartesian subscripts
equal and summing. Clearly the joining of a Cartesian to an angular momentum line

is meaningless.
Then remembering that all quantum numbers are integral, we find that the s

transformation coefficient can be represented by

(... aljs ... oy m)y=

aq [+ 7}
1 1 (3.12)
0 + +o
J J2
4. Manipulation of cs coefficients
e for

Now we can use the notation introduced in § 3 to derive some formula
manipulation of cs coefficients.
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41 Contraction of adjacent suffixes

(2758

--=X aman-x

+ jr + jr+‘l

2 Jr-1 A Jer . X(—l)i'+j'+‘+1[ 2:jr+1 ]1/2
2]r--1"-1

whence

(al... a,,{jl .. 'jn; m)a,,,,,,ﬂ
. .. , 2 P i 1
=(a1 e Q1 Qpyn oo a,,]]l coidr=tlr+2 oo s m)K ( - 1)"+]""1+

X 8 yjpel 2+ D/ 21 + DI @4.1)

42. Permutation of adjacent suffixes

a, ar+1
Irr+1) +
1

+ +11

j'q I r / r+1
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(see Brink and Satchler, equation (7.37)) whence
(r,r+1Xay ... @iy - - Jns 1)
‘ i
O I RSUC R i S

f 1 Jr+1 f

X(oq ...a,.‘jl ...j,-]fj,+1 ],,, m) (42)
This result is to be expected, since the transposition involves a simple recoupling of the

basis vectors of the polyadic A,,B., - . . Za,.
A discussion of the implications of this formula to the symmetry of the cs coefficients

with respect to permutation of Cartesian subscripts may be found in Stone (1975).

4.3. Inner and outer products

Consider the following expression:

) BZB (yoobspley . oo Xk . kg qiBy. . BXay .. By Bljr ... iy m)
4.3)

_where t=r+s. In graphical notation, this expression is:

@44

X8 1,050, « - - O,

by repeated use of the orthogonality of 3j symbols, equation (3.7).
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Now we require the following relation, which is obtained using Brink and Satchler’s

equation (7.34):

j
_ Ajll _ Ajlll L
1
+ —-— - -
kll k!ll
X[+ 1)(2k"+ )] 2 W(k'1jj"; k""). (4.5)

Use of this formula (s — 1) times, and finally (3.8), yields:
E(lx.-.l,;pla‘1 ook kg QIBl e BXay . afy ... lejl co iy m)
= [1 1@k, + 1) @2jrro—1+ DI Wkyiljdrsos Kafrso-1)}
o=2

Xailh s strOrkquIjtm>- ‘ (46)

Tnf:special cases s =0 and s = 1 are covered by (4.6) if we interpret the. null product as
ity ad write k, =g, =0 when s =0. The equation for s =0 merely expresses the
watity of the transformation.

Using (4.6) we can now derive the following:

41, Inner products

R .
maloa=2 (@ ... aplly... by pXey v alis .- Jis MRy, 15 Tin.jiime 4.7)
Since

. . _
el L py=(l . L plen . @yt = K=D)L —plag . . @), (4.8)
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{as can be shown inductively from equation (1.1)) this becomes
Rax...a.Tax...m: Z 811)’1812}2 o 810':8—-p.m’(2:(— 1)1'—pR ll...l:;PTh...]'::m

= L ()""Ryp. s Frvvio

J1euje

49)

where the phase factor in the last term arises from the different definitions of the scalar

product used by Fano and Racah and by Condon and Shortley.

4.3.2. Non-scalar inner products. If R, o, = Ta,. a:..8.58:..8. the spherical compo-

nents of R are given in terms of those for T and S by
Rll---lf;p= Z <ll cen l,;p|a1 “as a,)(a1 PP a,B; e lejl . .].,; m)
Jkmg
X{(Bi...Blks ... ks; DT}, jimSir...kniq
= ¥ 1 L@k +DQjrsoatt DI Wlkoo11birros kofpso-i)}
Jkmq o=2
X Kzs(“ l)k’-q(lrksp —qIjtm)Th...Irjr+1..-i:;msk1...k, q
(using (4.6) and (4.8)) and since
(aba —Blcy) =[2c +1)/2a+ 1]~ 1)*****"cbyBlaa),

we get

Ry 1p=k* L (- 157MQ5+1)/QL + 1]
Jk

X H {[(Zka + 1)(2jr+a‘—l + 1)]1/2 W(k —1 1 lr 'r+0'; ka:ir+a—1)}
o=2

X{(Thy...tgrrrie X Sko ke

An equivalent expression is

- fekg=
Ry 1:p=K" 2 (1Y (T tjeerie X Skey kg
i

X [T L@k +1)(2jro + DI *W(ky_11hjr105 Kofrro-1)}
o=1

since
W(O01Lj..1; 1j,) = 8,,[3C2L + 1)T 2.

Simﬂaﬂy, lf SB;...B,= Ra1...a'Ta1...a.Bx...B,: then
Strxg= L (kie. ko3 qlBy. .. BXan. .. ally ... L; )
jlmp

Xay...aB1. .. Bilir- - jis MRy 1p T jiim

(4.10)

{@.11)

@13)
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W“" t=r+ S)
= Kzr Z (" l)j'_P(jrks _pq|jtm)Rj1...jr;pTix--Aj:;m
i

X H {[(Zko- + 1)(2jr+o'—1 + 1)]1/2 W(k -1 1jrjr+o'; ka'jr+cr—l)} -

o=2

=Y (- 1yithatiq R iXTh ik
)

x [T {{2ko + 1) 2jro—1 + DI *Wkoo11jdreos Kedrro-1)}-

o=2 .

433. Outer products. If T, ap,.8.=Ray..a58,..8, then
Tiiom™ Y Gieejimlos .oy ... BXay...afly... L;p)
kipq

X(Bl .. Bs[kl ee. ks; q)Rh...lr;PSkl...k,;q

= Z (Rj1...jrx Skl...k)j,m
k

x [T L2k, + 1) @2j ot + DI Wkoo11jjrros kofreo-}-
o=2
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