Properties of Cartesian-spherical transformation coefficients

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9485
(http://iopscience.iop.org/0305-4470/9/4/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:16

Please note that terms and conditions apply.

Properties of Cartesian-spherical transformation coefficients

A J Stone
University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK

Received 7 April 1975, in final form 18 July 1975

Abstract

In a previous paper, a standard transformation was proposed for expressing Cartesian tensors and tensor expressions in spherical form, and vice versa. In this paper some properties of the transformation coefficients are derived. A recursion formula is given, which provides a simple means of generating the coefficients from those of the next rank below. The coefficients $\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle$ are tabulated for $n \leqslant 4, m=0$ and for $n=5, j_{n}=0$. Another recursion formula gives the coefficients for $m \neq 0$ in terms of those for $m=0$. A graphical method is used to derive formulae for manipulating the coefficients, and formulae are given for handling products of tensors, contracted or uncontracted.

1. Introduction

It is well-known that a Cartesian tensor of rank greater than one can be reduced into several spherical components (e.g. Fano and Racah 1959). Depending on the nature of acalculation, one or the other of these forms may be more suitable, and it is therefore convenient to have a standard transformation for converting a tensor, or a tensor expression, from one form to the other. In a previous paper (Stone 1975) Cartesianspherical (cs) transformation coefficients were defined by considering a 'polyadic' $A_{\alpha_{1}} B_{\alpha_{2}} \ldots Z_{\alpha_{n}}$. By transforming each of the vectors in this expression to spherical form, and then coupling the spherical vectors together from left to right, one arrives at a recursive definition for the transformation coefficient:
$\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle=\sum_{m^{\prime} m^{\prime \prime}}\left\langle\alpha_{1} \ldots \alpha_{n-1} \mid j_{1} \ldots j_{n-1} ; m^{\prime}\right\rangle\left\langle\alpha_{n} \mid 1 ; m^{\prime \prime}\right\rangle\left\langle j_{n-1} 1 m^{\prime} m^{\prime \prime} \mid j_{n} m\right\rangle$,
where $\left\langle j_{n-1} 1 m^{\prime} m^{\prime \prime} \mid j_{n} m\right\rangle$ is a Clebsch-Gordan coefficient and $\langle\alpha \mid 1 ; m\rangle$ is the unitary matrix

$$
\left.\begin{array}{l}
 \tag{1.2}\\
\langle x| \\
\langle y| \\
\langle z|
\end{array} \quad \begin{array}{lll}
|1 ; 1\rangle & |1 ; 0\rangle & |1 ;-1\rangle \\
-\sqrt{\frac{1}{2} \mathrm{i} \kappa} & 0 & \sqrt{\frac{1}{2}} \mathrm{i} \kappa \\
\sqrt{\frac{1}{2} \kappa} & 0 & \sqrt{\frac{1}{2} \kappa} \\
0 & \mathrm{i} \kappa & 0
\end{array}\right) .
$$

Here κ is a phase factor, which is 1 if Fano and Racah's (1959) phase convention is required, or -i for Condon and Shortley's (1935). The spherical components $T_{j_{1} \ldots j_{n}: m}$
of spherical rank j_{n} of a Cartesian tensor $T_{\alpha_{1} \ldots \alpha_{n}}$ of Cartesian rank n are then given by

$$
\begin{equation*}
T_{j_{1} \ldots j_{n} ; m}=\sum_{\alpha_{1} \ldots \alpha_{n}} T_{\alpha_{1} \ldots \alpha_{n}}\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle \tag{1.3}
\end{equation*}
$$

and conversely

$$
\begin{equation*}
T_{\alpha_{1} \ldots \alpha_{n}}=\sum_{j_{1} \ldots j_{n} ; m} T_{j_{1} \ldots j_{n} ; m}\left\langle j_{1} \ldots j_{n} ; m \mid \alpha_{1} \ldots \alpha_{n}\right\rangle \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle j_{1} \ldots j_{n} ; m \mid \alpha_{1} \ldots \alpha_{n}\right\rangle=\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle^{*} \tag{1.5}
\end{equation*}
$$

so that the transformation is unitary. The subscripts $j_{1}, j_{2} \ldots j_{n-1}$ are (sometimes) required to distinguish between different spherical tensors with the same j_{n}; they can be dropped where no ambiguity results. j_{1} is always 1 , but is included in the notation for completeness and for convenience in some formulae.

Some applications of this transformation have been suggested elsewhere (Stone 1975), and in this paper I shall examine some of its mathematical properties. In $\$ 2$ two recurrence relations are derived which make the computation of the coefficients somewhat simpler than the direct use of (1.1), while in §3 a graphical method is described for handling the coefficients. This is used in § 4 to derive some formulae for manipulating the coefficients, particularly in relation to products of tensors, contracted or uncontracted. The need for these can be seen by considering a tensor quantity such as $C_{\alpha}=A_{\alpha \beta \gamma} B_{\beta \gamma}$. This is a vector, and transforms into a spherical tensor $C_{1 m}$ of rank 1; while if we consider the special case where A and B are symmetric and traceless, they transform into spherical tensors $A_{3 m^{\prime}}$ and $B_{2 m^{\prime \prime}}$ of ranks 3 and 2 respectively. However, the tensor $C_{1 m}$ is not identical with the tensor $\left(A_{3} \times B_{2}\right)_{1 m}=\left\langle 32 m^{\prime} m^{\prime \prime} \mid 1 m\right\rangle A_{3 m^{\prime}} B_{2 m}$, obtained by coupling $A_{3 m^{\prime}}$ and $B_{2 m^{\prime \prime}}$ together, and attempts to make these expressions identical would remove the unitarity of the transformation. The results of $\S 4$ show that in fact

$$
C_{1 m}=\left(\frac{7}{3}\right)^{1 / 2}\left(A_{3} \times B_{2}\right)_{1 m} .
$$

Previous workers (Coope et al 1965, Coope and Snider 1970, Coope 1970) investigated the relationship between Cartesian tensors and their irreducible spherial components, but preferred to work in Cartesian forms throughout. If it is required to follow their approach of projecting out of a Cartesian tensor $A_{\alpha_{1} \ldots \alpha_{n}}$ another Cartesian tensor (of the same rank) corresponding to a given spherical component, this can be achieved using the transformation described here:
$A_{\alpha_{1} \ldots \alpha_{n}}^{\left(j_{1} \ldots j_{n}\right)}=\sum_{m} \sum_{\beta} A_{\beta_{1} \ldots \beta_{n}}\left\langle\beta_{1} \ldots \beta_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle\left\langle j_{1} \ldots j_{n} ; m \mid \alpha_{1} \ldots \alpha_{n}\right\rangle$.
Indeed the j_{n} component can be embedded in a Cartesian tensor of any rank $n^{n} \geqslant j_{n}$:
$\boldsymbol{A}_{\left(j_{1} \ldots j_{n}\right) \alpha_{1} \ldots \alpha_{n^{\prime}}}^{\left(j_{1}, j_{n}\right)}=\sum_{m} \sum_{\beta} A_{\beta_{1} \ldots \beta_{n}}\left\langle\beta_{1} \ldots \beta_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle\left\langle j_{1}^{\prime} j_{2}^{\prime} \ldots j_{n^{\prime}}^{\prime} ; m \mid \alpha_{1} \ldots \alpha_{n^{\prime}}\right\rangle$,
where $j_{2}^{\prime} \ldots j_{n^{\prime}}^{\prime}$ can be chosen in several ways, in general, provided that $j_{n}^{\prime}=j_{n}$. An example is the well-known relationship between the antisymmetric part of a second rank tensor and a vector:

$$
\begin{equation*}
A_{(1) \alpha}^{(11)}=\sum_{m} \sum_{\beta} A_{\beta_{1} \beta_{2}}\left\langle\beta_{1} \beta_{2} \mid 11 ; m\right\rangle\langle 1 ; m \mid \alpha\rangle=-(\kappa / \sqrt{ } 2) \epsilon_{\alpha \beta_{1} \beta_{2}} A_{\beta_{1} \beta_{2}} \tag{1.8}
\end{equation*}
$$

2. Recurrence relations

The definition (1.1) is somewhat inconvenient to use. A little manipulation leads to two recurrence relations: the first provides a formula for obtaining $\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle$ for any m from $\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; 0\right\rangle$, while the second expresses $\left\{a_{1} \ldots \alpha_{n+1}\left|j_{1} \ldots j_{n+1} ; 0\right\rangle\right.$ in terms of the $\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; 0\right\rangle$.

Consider the expression

$$
\begin{align*}
{\left[j_{n}\left(j_{n}+1\right)-\right.} & m(m+1)]^{1 / 2}\left\langle\alpha_{1} \ldots \alpha_{n-1} \alpha_{n} \mid j_{1} \ldots j_{n-1} j_{n} ; m+1\right\rangle . \\
= & \sum_{m^{\prime} m^{\prime \prime}}\left\langle\alpha_{1} \ldots \alpha_{n-1} \mid j_{1} \ldots j_{n-1} ; m^{\prime}\right\rangle\left\langle\alpha_{n} \mid 1 ; m^{\prime \prime}\right\rangle \\
& \times\left[j_{n}\left(j_{n}+1\right)-m(m+1)\right]^{1 / 2}\left(j_{n-1} 1 m^{\prime} m^{\prime \prime}\left|j_{n} m+1\right\rangle\right. \\
= & \sum_{m^{\prime} m^{\prime \prime}}\left\langle\alpha_{1} \ldots \alpha_{n-1} \mid j_{1} \ldots j_{n-1} ; m^{\prime}\right\rangle\left\langle\alpha_{n} \mid 1 ; m^{\prime \prime}\right\rangle \\
& \times\left\{\left[j_{n-1}\left(j_{n-1}+1\right)-m^{\prime}\left(m^{\prime}-1\right)\right]^{1 / 2}\left\langle j_{n-1} 1 m^{\prime}-1 m^{\prime \prime} \mid j_{n} m\right\rangle\right. \\
& \left.\left.+\left[1.2-m^{\prime \prime}\left(m^{\prime \prime}-1\right)\right]^{1 / 2}\left\langle j_{n-1} 1 m^{\prime} m^{\prime \prime}-1\right| j_{n} m\right)\right\} . \tag{2.1}
\end{align*}
$$

By replacing m^{\prime} by $m^{\prime}+1$ in the first term and $m^{\prime \prime}$ by $m^{\prime \prime}+1$ in the second, we get

$$
\begin{align*}
&\left.\sum_{m^{\prime} m^{\prime}}\left\langle\alpha_{1} \ldots \alpha_{n-1}\right| j_{1} \ldots j_{n-1} ; m^{\prime}+1\right)\left[j_{n-1}\left(j_{n-1}+1\right)-m^{\prime}\left(m^{\prime}+1\right)\right]^{1 / 2}\left\langle\alpha_{n} \mid 1 ; m^{\prime \prime}\right\rangle \\
& \times\left(j_{n-1} 1 m^{\prime} m^{\prime \prime}\left|j_{n} m\right\rangle+\sum_{m^{\prime} m^{\prime \prime}}\left\langle\alpha_{1} \ldots \alpha_{n-1} \mid j_{1} \ldots j_{n-1} ; m^{\prime}\right\rangle\left\langle\alpha_{n} \mid 1 ; m^{\prime \prime}+1\right\rangle\right. \\
& \times\left[2-m^{\prime \prime}\left(m^{\prime \prime}+1\right)\right]^{1 / 2}\left\langle j_{n-1} 1 m^{\prime} m^{\prime \prime} \mid j_{n} m\right\rangle . \tag{2.2}
\end{align*}
$$

Now the second term of this expression is like the definition of the cs coefficient except that $\left\langle\alpha_{n} \mid 1 ; m^{\prime \prime}\right\rangle$ has been replaced by $\left\langle\alpha_{n} \mid 1 ; m^{\prime \prime}+1\right\rangle\left[2-m^{\prime \prime}\left(m^{\prime \prime}+1\right)\right]^{1 / 2}$. Let us write this last expression as

$$
\begin{align*}
& \left.\sum_{m^{\prime \prime}}\left\langle\alpha_{n}\right| 1 ; m^{\prime \prime \prime}+1\right)\left[2-m^{\prime \prime \prime}\left(m^{\prime \prime \prime}+1\right)\right]^{1 / 2} \delta_{m^{\prime \prime \prime} m^{\prime \prime}} \\
& \quad=\sum_{m^{\prime \prime}}\left\langle\alpha_{n} \mid 1 ; m^{\prime \prime \prime}+1\right\rangle\left[2-m^{\prime \prime \prime}\left(m^{\prime \prime \prime}+1\right)\right]^{1 / 2}\left\langle 1 ; m^{\prime \prime \prime} \mid 1 ; m^{\prime \prime}\right\rangle \\
& \quad=\left\langle\alpha_{n}\right| \hat{J}_{+}\left|1 ; m^{\prime \prime}\right\rangle, \tag{2.3}
\end{align*}
$$

where \hat{J}_{+}is the usual angular momentum shift operator. It is convenient to introduce Dew operators $\mathscr{F}_{ \pm}^{(r)}$, defined by

$$
\begin{equation*}
\mathscr{F}_{ \pm}^{(r)}\left\langle\alpha_{s} \mid 1 ; m\right\rangle=\delta_{r s}\left\langle\alpha_{r}\right| \hat{J}_{ \pm}|1 ; m\rangle . \tag{2.4}
\end{equation*}
$$

(grt) could be defined similarly but will not be needed.) Using (1.2) in the form

$$
\begin{align*}
& \langle\alpha \mid 1 ; 0\rangle=\mathrm{i} \kappa \hat{z}_{\alpha}, \\
& \langle\alpha \mid 1 ; \pm 1\rangle=\mp \sqrt{2} \mathrm{i} \kappa\left(\hat{x}_{\alpha} \pm \mathrm{i} \hat{y}_{\alpha}\right), \tag{2.5}
\end{align*}
$$

where $\hat{x}_{\alpha,} \hat{y}_{\alpha}$ and \hat{z}_{α} are unit vectors along the x, y and z axes, it is a straightforward matter to show that

$$
\begin{equation*}
\mathscr{F}_{a}^{(r)} \hat{b}_{\alpha_{r}}=\sum_{c} \mathbf{i} \epsilon_{a b c} \hat{c}_{\alpha_{r}} \tag{2.6}
\end{equation*}
$$

Where $a=x$ or $y ; b, c=x, y$, or z; and $\mathscr{F}_{x}, \mathscr{F}_{y}$ are defined by $\mathscr{F}_{ \pm}=\mathscr{F}_{x} \pm i \mathscr{F}_{y}$. The effect of
$\mathscr{J}_{a}^{(r)}$ on expressions such as $\delta_{\alpha_{r} \alpha_{s}}$ is now easily found:

$$
\begin{equation*}
\mathscr{J}_{a}^{(1)} \delta_{\alpha_{1} \alpha_{2}}=\mathscr{J}_{a}^{(1)} \sum_{b} \hat{b}_{\alpha_{1}} \hat{b}_{\alpha_{2}}=\sum_{b c} \mathbf{i} \epsilon_{a b c} \hat{c}_{\alpha_{1}} \hat{b}_{\alpha_{2}}, \tag{2.7}
\end{equation*}
$$

and one finds alṣo that

$$
\begin{align*}
& {\left[\mathscr{F}_{a}^{(1)}+\mathscr{f}_{a}^{(2)}\right] \delta_{\alpha_{1} \alpha_{2}}=0,} \\
& {\left[\mathscr{F}_{a}^{(1)}+\mathscr{F}_{a}^{(2)}+\mathscr{F}_{a}^{(3)}\right] \epsilon_{\alpha_{1} \alpha_{2} \alpha_{3}}=0 .} \tag{2.8}
\end{align*}
$$

One should perhaps emphasize that $\mathscr{F}_{a}^{(r)}$ is not a respectable quantum mechanical operator but merely a convenient mathematical shorthand.

Returning to (2.2), we now treat the first term in the same way as the initial expression of (2.1). By repetition we eventually obtain a sum of terms:

$$
\begin{align*}
& {\left[j_{n}\left(j_{n}+1\right)-m(m \pm 1)\right]^{1 / 2}\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m \pm 1\right\rangle} \\
& \quad=\sum_{r} \mathscr{F}_{ \pm}^{(r)}\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle=\mathscr{g}_{ \pm}\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle \tag{2.9}
\end{align*}
$$

where

$$
\mathscr{J}_{ \pm}=\sum_{r=1}^{n} \mathscr{F}_{ \pm}^{(r)}
$$

As an example of this formula we may obtain the $\langle\alpha \beta \mid 12 ; m\rangle, m>0$, from $\langle\alpha \beta \mid 12 ; 0\rangle$, which is shown below to be equal to $-\left(\kappa^{2} / \sqrt{ } 6\right)\left[3 \hat{z}_{\alpha} \hat{z}_{\beta}-\delta_{\alpha \beta}\right]$. We have

$$
\begin{aligned}
\sqrt{ } 6\langle\alpha \beta \mid 12 ; 1\rangle & =\left(\mathscr{F}_{+}^{(\alpha)}+\mathscr{f}_{+}^{(\beta)}\right)\left(-\kappa^{2} / \sqrt{ } 6\right)\left[3 \hat{z}_{\alpha} \hat{z}_{\beta}-\delta_{\alpha \beta}\right] \\
& =\left(-\kappa^{2} / \sqrt{ } 6\right)\left[-3\left(\hat{x}_{\alpha}+i \hat{y}_{\alpha}\right) \hat{z}_{\beta}-3 \hat{z}_{\alpha}\left(\hat{x}_{\beta}+i \hat{y}_{\beta}\right)\right]
\end{aligned}
$$

so that

$$
\begin{equation*}
\langle\alpha \beta \mid 12 ; 1\rangle=\left(\kappa^{2} / 2\right)\left[\hat{x}_{\alpha} \hat{z}_{\beta}+\hat{z}_{\alpha} \hat{x}_{\beta}+\mathrm{i}\left(\hat{y}_{\alpha} \hat{z}_{\beta}+\hat{z}_{\alpha} \hat{y}_{\beta}\right)\right] . \tag{2.10}
\end{equation*}
$$

Similarly

$$
\sqrt{ } 4\langle\alpha \beta \mid 12 ; 2\rangle=\left(\kappa^{2} / 2\right)\left[-2\left(\hat{x}_{\alpha}+\mathrm{i} \hat{y}_{\alpha}\right)\left(\hat{x}_{\beta}+\mathrm{i} \hat{y}_{\beta}\right)\right],
$$

so that

$$
\begin{equation*}
\langle\alpha \beta \mid 12 ; 2\rangle=-\left(\kappa^{2} / 2\right)\left[\hat{x}_{\alpha} \hat{x}_{\beta}-\hat{y}_{\alpha} \hat{y}_{\beta}+\mathrm{i}\left(\hat{x}_{\alpha} \hat{y}_{\beta}+\hat{y}_{\alpha} \hat{x}_{\beta}\right)\right] . \tag{2.11}
\end{equation*}
$$

Now we seek a similar formula relating $\left\langle\alpha_{1} \ldots \alpha_{n} \zeta \mid j_{1} \ldots j_{n} j ; 0\right\rangle$ and $\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; 0\right\rangle$. From (1.1) we have
$\left\langle\alpha_{1} \ldots \alpha_{n} \zeta \mid j_{1} \ldots j_{n} j ; 0\right\rangle=\sum_{m}\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle\langle\zeta \mid 1 ;-m\rangle\left\langle j_{n} 1 m-m \mid j 0\right\rangle$.
We can use (2.9) in the terms with $m \neq 0$, insert the expressions (2.5) for the $\langle\zeta \mid 1 ; m\rangle$, and substitute algebraic expressions for the Clebsch-Gordan coefficients to give

$$
\begin{align*}
&\left\langle\alpha_{1} \ldots \alpha_{n} \zeta \mid j_{1} \ldots j_{n} j ; 0\right\rangle \\
&= \kappa\left\{\delta_{j, j_{n}+1}\left[\left(j_{n}+1\right)\left(2 j_{n}+1\right)\right]^{-1 / 2}\left[\mathrm{i}\left(j_{n}+1\right) \hat{z}_{\xi}+\hat{y}_{\xi} \mathscr{F}_{x}-\hat{x}_{\xi} \mathscr{F}_{y}\right]\right. \\
&+\delta_{j, j_{n}-1}\left[j_{n}\left(2 j_{n}+1\right)\right]^{-1 / 2}\left[-\mathrm{i} j_{n} \hat{z}_{\xi}+\hat{y}_{\xi} \mathscr{F}_{x}-\hat{x}_{\xi} \mathscr{F}_{y}\right]+\mathrm{i} \delta_{j, j n}\left[j_{n}\left(j_{n}+1\right)\right]^{-1 / 2} \\
&\left.\times\left[\hat{x}_{\xi} \mathscr{F}_{x}+\hat{y}_{b} \mathscr{F}_{y}\right]\right\}\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; 0\right\rangle . \tag{2.13}
\end{align*}
$$

Expressions for the $\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; 0\right\rangle$ for $n \leqslant 4$ and for $n=5, j_{5}=0$ have been derived using this formula, and checked against the results of a computer program whichevaluates the coefficients directly using (1.1). The results are given in table 1. For

Table 1.

Cortesian rank 1:
$(\alpha \mid 1 ; 0)=i \kappa \hat{z}_{c}$
Curtesian rank 2:

```
\(\left(\alpha \beta(10 ; 0)=\left(\kappa^{2} / \sqrt{3}\right) \delta_{\alpha \beta}\right.\)
\(\langle a \beta| 11 ; 0)=-\left(\mathrm{i} \kappa^{2} / \sqrt{ } 2\right)\left[\hat{x}_{\alpha} \hat{y}_{\beta}-\hat{y}_{\alpha} \hat{x}_{\beta}\right]\)
\((\alpha \beta \mid 12 ; 0)=-\left(\kappa^{2} / \sqrt{ } 6\right)\left[3 \hat{z}_{\alpha} \hat{z}_{\beta}-\delta_{\alpha \beta}\right]\)
```


Cartesian rank 3:

$\langle\alpha \beta \gamma 1101 ; 0)=\left(\mathrm{i}^{3} / \sqrt{3}\right) \delta_{\alpha \beta} \hat{z}_{\gamma}$
$\langle\alpha \beta \gamma| 110 ; 0)=-\left(\kappa^{3} / \sqrt{ } 6\right) \epsilon_{\alpha \beta \gamma}$
$\langle\alpha \beta \gamma \mid 111 ; 0\rangle=\left(i \kappa^{3} / 2\right)\left[\hat{z}_{\beta} \delta_{\alpha \gamma}-\hat{z}_{\alpha} \delta_{\beta \gamma}\right]$
$\langle\alpha \beta y 112 ; 0\rangle=12^{-1 / 2} \kappa^{3}\left[3 \hat{x}_{\alpha} \hat{y}_{\beta} \hat{z}_{\gamma}-3 \hat{y}_{\alpha} \hat{\hat{\beta}}_{\beta} \hat{z}_{\gamma}-\epsilon_{\alpha \beta \gamma}\right]$
$\langle\alpha \beta \gamma 121 ; 0)=-60^{-1 / 2}{ }_{i K}{ }^{3}\left[2 \delta_{\alpha \beta} \hat{z}_{\gamma}-3 \hat{z}_{\beta} \delta_{\alpha \gamma}-3 \hat{z}_{\alpha} \delta_{\beta \gamma}\right]$
$(\alpha a \beta \gamma 122 ; 0)=\left(\kappa^{3} / 2\right)\left[\hat{z}_{\alpha} \hat{\hat{x}}_{\beta} \hat{y}_{\gamma}-\hat{z}_{\alpha} \hat{\hat{y}}_{\beta} \hat{x}_{\gamma}+\hat{x}_{\alpha} \hat{z}_{\beta} \hat{y}_{\gamma}-\hat{y}_{\alpha} \hat{z}_{\beta} \hat{x}_{\gamma}\right]$
${ }^{\text {(} \alpha \gamma \gamma \mid 123 ; 0)}=-10^{-1 / 2} \mathrm{i}_{\mathrm{i}}{ }^{3}\left[5 \hat{z}_{\alpha} \hat{z}_{\beta} \hat{z}_{\gamma}-\delta_{\alpha \beta} \hat{z}_{\gamma}-\hat{z}_{\beta} \delta_{\alpha \gamma}-\hat{z}_{\alpha} \delta_{\beta \gamma}\right]$
Caresian rank 4:
($\alpha \beta \gamma \delta\left(1010 ; 0\right.$) $=\frac{1}{3} \delta_{\alpha \beta} \delta_{\gamma \delta}$
(ag ${ }^{2} \delta|1011 ; 0\rangle=-6^{-1 / 2} i_{\alpha \beta}\left[\hat{x}_{y} \hat{y}_{\delta}-\hat{y}_{\gamma} \hat{x}_{\sigma}\right]$
($\alpha \beta \beta \gamma)|1012 ; 0\rangle=-18^{-1 / 2} \delta_{\alpha \beta}\left[3 \hat{z}_{\gamma} \hat{z}_{\delta}-\delta_{\gamma \delta}\right]$
$\langle\alpha \beta \gamma ; \mid 1101 ; 0\rangle=-6^{-1 / 2} i_{\epsilon_{\alpha \beta}} \hat{z}_{\hat{\delta}}$
$\langle a \beta \gamma \delta \mid 1110 ; 0\rangle=12^{-1 / 2}\left[\delta_{\alpha \gamma} \delta_{\beta g}-\delta_{\alpha \delta} \delta_{\beta \gamma}\right]$
(apرro| $1111 ; 0\rangle=8^{-1 / 2}{ }^{2}\left[\left(\hat{x}_{\alpha} \hat{y}_{\beta}-\hat{y}_{\alpha} \hat{x}_{\beta}\right) \delta_{\gamma \delta}-\epsilon_{\alpha \beta \delta} \hat{z}_{\gamma}\right]$
$\langle\alpha \beta \gamma \delta \mid 1112 ; 0\rangle=24^{-1 / 2}\left[\delta_{\beta \gamma}\left(3 \hat{z}_{\alpha} \hat{z}_{\delta}-\delta_{\alpha \delta}\right)-\delta_{\alpha \gamma}\left(3 \hat{z}_{\beta} \hat{z}_{\delta}-\delta_{\beta \delta}\right)\right]$
($\alpha \beta \gamma \gamma \delta|121 ; 0\rangle=-120^{-1 / 2}{ }^{2}\left[3 \epsilon_{\alpha \beta \delta} \hat{z}_{\gamma}-2 \epsilon_{\alpha \beta \gamma} \hat{z}_{s}+3\left(\hat{x}_{\alpha} \hat{y}_{\beta}-\hat{y}_{\alpha} \hat{x}_{\beta}\right) \delta_{\gamma \delta}\right]$
${ }^{(\alpha \beta \gamma \gamma \delta \mid 122 ; 0)}=8^{-1 / 2}\left[\hat{z}_{\alpha} \hat{z}_{\gamma} \delta_{\beta \delta}-\hat{z}_{\beta} \hat{z}_{\gamma} \delta_{\alpha \delta}-\left(\hat{x}_{\alpha} \hat{y}_{\beta}-\hat{y}_{\alpha} \hat{x}_{\beta}\right)\left(\hat{\gamma}_{\gamma} \hat{y}_{\delta}-\hat{y}_{\gamma} \hat{\hat{x}}_{\delta}\right)\right]$
($\alpha \beta \gamma \delta ; 1123 ; 0\rangle=20^{-1 / 2 i}\left[\left(\hat{x}_{\alpha} \hat{y}_{\beta}-\hat{y}_{\alpha} \hat{x}_{\beta}\right)\left(5 \hat{z}_{\gamma_{\gamma}} \hat{z}_{\delta}-\delta_{\gamma \delta}\right)-\epsilon_{\alpha \beta \gamma} \hat{z}_{\delta}-\epsilon_{\alpha \beta \delta} \hat{z}_{\gamma}\right]$
$\left\{a \beta 8 \gamma|1210 ; 0\rangle=180^{-1 / 2}\left[3 \delta_{\alpha \gamma} \delta_{\beta 6}-3 \delta_{\alpha \delta} \delta_{\beta \gamma}-2 \delta_{\alpha \beta} \delta_{\gamma \delta}\right]\right.$
($\alpha \beta \gamma \gamma|1211 ; 0\rangle=120^{-1 / 2} i\left[2 \delta_{\alpha \beta}\left(\hat{x}_{\gamma} \hat{y}_{\delta}-\hat{y}_{\gamma} \hat{x}_{\delta}\right)-3 \delta_{\alpha \gamma}\left(\hat{x}_{\beta} \hat{y}_{\delta}-\hat{y}_{\beta} \hat{x}_{\delta}\right)-3 \delta_{\beta \gamma}\left(\hat{x}_{\alpha} \hat{y}_{\delta}-\hat{y}_{\alpha} \hat{\gamma}_{\delta}\right)\right]$
$\left(a \beta \gamma \gamma|\mid 212 ; 0)=360^{-1 / 2}\left[2 \delta_{\alpha \beta}\left(3 \hat{z}_{\gamma} \hat{z}_{\delta}-\delta_{\gamma \delta}\right)-3 \delta_{\alpha \gamma}\left(3 \hat{z}_{\beta} \hat{z}_{\delta}-\delta_{\beta \delta}\right)-3 \delta_{\beta \gamma}\left(3 \hat{z}_{\alpha} \hat{z}_{\delta}-\delta_{a \delta}\right)\right]\right.$
($\alpha \beta \gamma \delta|1221 ; 0\rangle=-40^{-1 / 2} i\left[\delta_{\alpha \delta}\left(\hat{x}_{\beta} \hat{y}_{\gamma}-\hat{y}_{\beta} \hat{x}_{\gamma}\right)+\hat{\hat{z}}_{\alpha} \epsilon_{\beta \gamma \delta}+\delta_{\beta \delta}\left(\hat{x}_{\alpha} \hat{y}_{\gamma}-\hat{y}_{\alpha} \hat{x}_{\gamma}\right)+\hat{\hat{z}}_{\beta} \epsilon_{\alpha \gamma \delta}\right]$
$\left\langle\alpha \beta \gamma_{\gamma} \mid 1222 ; 0\right\rangle=-24^{-2 / 2}\left[2\left(\delta_{\alpha \beta} \delta_{\gamma \delta}-\delta_{\alpha \beta} \hat{z}_{\gamma} \hat{z}_{\delta}-2 \hat{z}_{\alpha} \hat{z}_{\beta} \delta_{\gamma \delta}\right)-\left(\delta_{\alpha \gamma} \delta_{\beta \delta}-\delta_{\alpha \gamma} \hat{z}_{\beta} \hat{z}_{\delta}-2 \hat{z}_{\alpha} \hat{z}_{\gamma} \delta_{\beta \delta}\right)\right.$

$$
\left.-\left(\delta_{\beta \gamma} \delta_{\alpha \delta}-\delta_{\beta \gamma} \hat{z}_{\alpha} \hat{z}_{\delta}-2 \hat{z}_{\beta} \hat{z}_{\gamma} \delta_{\alpha \delta}\right)\right]
$$

($\alpha \beta \beta \gamma ; \mid 1223 ; 0)=60^{-1 / 2} \mathrm{i}\left[\left(5 \hat{z}_{\alpha} \hat{z}_{\delta}-\delta_{\alpha \delta}\right)\left(\hat{x}_{\beta} \hat{y}_{\gamma}-\hat{y}_{\beta} \hat{x}_{\gamma}\right)-\hat{z}_{\alpha} \epsilon_{\beta \gamma \delta}+\left(5 \hat{z}_{\beta} \hat{z}_{\delta}-\delta_{\beta \delta}\right)\left(\hat{\tilde{x}}_{\alpha} \hat{y}_{\gamma}-\hat{y}_{\alpha} \hat{x}_{\gamma}\right)-\hat{z}_{\beta} \epsilon_{\alpha \gamma \delta}\right]$
$($ app $\gamma \dot{j} 1232 ; 0\rangle=210^{-1 / 2}\left[\delta_{\alpha \beta} \delta_{\gamma \delta}+\delta_{\alpha \gamma} \delta_{\beta \delta}+\delta_{\beta \gamma} \delta_{a \delta}-5\left(\hat{z}_{\alpha} \hat{z}_{\beta} \delta_{\gamma \delta}+\hat{z}_{\alpha} \hat{z}_{\gamma} \delta_{\beta \delta}+\hat{z}_{\beta} \hat{z}_{\gamma} \delta_{\alpha \delta}\right)\right.$

$$
\left.+2\left(\delta_{\alpha \beta} \hat{z}_{\gamma} \hat{z}_{\delta}+\delta_{\alpha \gamma} \hat{\hat{}}_{\hat{\beta}} \hat{z}_{\delta}+\delta_{\beta \gamma} \hat{\hat{z}}_{\alpha} \hat{z}_{\delta}\right)\right]
$$

Table 1. continued

$$
\begin{aligned}
\langle\alpha \beta \gamma \delta \mid 1233 ; 0\rangle= & 120^{-1 / 2_{i} i\left(5 \hat{z}_{\alpha} \hat{z}_{\beta}-\delta_{\alpha \beta}\right)\left(\hat{x}_{\gamma} \hat{y}_{\delta}-\hat{y}_{\gamma} \hat{x}_{\delta}\right)+\left(5 \hat{z}_{\alpha} \hat{z}_{\gamma}-\delta_{\alpha \gamma}\right)\left(\hat{x}_{\beta} \hat{y}_{\delta}-\hat{y}_{\beta} \hat{z}_{\delta}\right)+\left(5 \hat{z}_{\beta} \hat{z}_{\gamma}-\delta_{\beta \gamma}\right)} \\
& \left.\times\left(\hat{x}_{\alpha} \hat{y}_{\delta}-\hat{y}_{\alpha} \hat{\hat{z}}_{\delta}\right)\right] \\
\langle\alpha \beta \gamma \delta \mid 1234 ; 0\rangle= & 280^{-1 / 2}\left[\delta_{\alpha \beta} \delta_{\gamma \delta}+\delta_{\alpha \gamma} \delta_{\beta \delta}+\delta_{\alpha} \delta_{\beta \gamma}\right. \\
& \left.-5\left(\delta_{\alpha \beta} \hat{z}_{\gamma} \hat{z}_{\delta}+\delta_{\alpha \gamma} \hat{z}_{\beta} \hat{z}_{\delta}+\delta_{\alpha \delta} \hat{z}_{\beta} \hat{z}_{\gamma}+\delta_{\gamma \delta} \hat{z}_{\alpha} \hat{z}_{\beta}+\delta_{\beta \delta} \hat{z}_{\alpha} \hat{z}_{\gamma}+\delta_{\beta \gamma} \hat{z}_{\alpha} \hat{z}_{\delta}\right)+35 \hat{z}_{\alpha} \hat{z}_{\beta} \hat{z}_{\gamma} \hat{z}_{\delta}\right]
\end{aligned}
$$

Cartesian rank 5:

```
\(\langle\alpha \beta \gamma \delta \epsilon \mid 10110 ; 0\rangle=-18^{-1 / 2}{ }_{\kappa} \delta_{\alpha \beta} \epsilon_{\gamma \delta}\)
\(\langle\alpha \beta \gamma \delta \epsilon \mid 11010 ; 0\rangle=-18^{-1 / 2} \kappa \epsilon_{\alpha \beta \gamma} \delta_{\delta \sigma}\)
\(\langle\alpha \beta \gamma \delta \epsilon \mid 11110 ; 0\rangle=-24^{-1 / 2} \kappa\left[\epsilon_{\alpha \gamma \delta} \delta_{\beta \delta}-\epsilon_{\beta \gamma \epsilon} \delta_{\alpha \delta}-\epsilon_{\alpha \gamma \delta \delta} \delta_{\beta \epsilon}+\epsilon_{\beta \gamma \delta} \delta_{\alpha \epsilon}\right]\)
\(\langle\alpha \beta \gamma \delta \epsilon \mid 11210 ; 0\rangle=-360^{-1 / 2}{ }_{\kappa}\left[4 \epsilon_{\alpha \beta \gamma} \delta_{\delta \epsilon}+3\left(\epsilon_{\alpha \gamma \delta} \delta_{\beta \delta}-\epsilon_{\beta \gamma} \delta_{\alpha \delta}+\epsilon_{\alpha \gamma \gamma} \delta_{\beta \epsilon}-\epsilon_{\beta \gamma \delta} \delta_{\alpha \delta}\right]\right.\)
\(\langle\alpha \beta \gamma \delta \epsilon \mid 12110 ; 0\rangle=-360^{-1 / 2} \kappa\left[4 \delta_{\alpha \beta} \epsilon_{\gamma \varepsilon}+3\left(\epsilon_{\alpha \gamma \varepsilon} \delta_{\beta \delta}+\epsilon_{\beta \gamma \epsilon} \delta_{\alpha \delta}-\epsilon_{\alpha \gamma \delta} \delta_{\beta \epsilon}-\epsilon_{\beta \gamma \delta} \delta_{\alpha \epsilon}\right)\right]\)
\(\langle\alpha \beta \gamma \delta \epsilon \mid 12210 ; 0\rangle=-120^{-1 / 2} \kappa\left[\delta_{\alpha \delta \delta_{\beta \gamma \epsilon}}+\delta_{\alpha \epsilon} \epsilon_{\beta \gamma \delta}+\delta_{\beta \delta} \epsilon_{\alpha \gamma \varepsilon}+\delta_{\beta e} \epsilon_{\alpha \gamma \delta}\right]\)
```

$n=5$ the number of coefficients becomes rather large, but the six scalars are particularly useful-for example in obtaining spherical averages of tensor properties, which are conveniently expressed in the form

$$
\begin{equation*}
\left\langle T_{\alpha_{2} \ldots \alpha_{n}}\right\rangle=\sum_{j \beta m}\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle \delta_{j_{n} 0} \delta_{m 0}\left\langle j_{1} \ldots j_{n} ; m \mid \beta_{1} \ldots \beta_{n}\right\rangle T_{\beta_{1} \ldots \beta_{n}} \tag{2.14}
\end{equation*}
$$

One can see from these results, as one would expect, that $\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; 0\right\rangle$ is independent of the axis system if $j_{n}=0$, and also that a coefficient in which one of the intermediate j_{r} is zero can be written as a product of simpler coefficients:

$$
\begin{align*}
\left\langle\alpha_{1} \ldots \alpha_{r} \ldots\right. & \alpha_{n}\left|j_{1} \ldots j_{r-1} 0 j_{r+1} \ldots j_{n} ; m\right\rangle \\
& =\left\langle\alpha_{1} \ldots \alpha_{r} \mid j_{1} \ldots j_{r-1} 0 ; 0\right\rangle\left\langle\alpha_{r+1} \ldots \alpha_{n} \mid j_{r+1} \ldots j_{n} ; m\right\rangle \tag{2.15}
\end{align*}
$$

A result which is less apparent, but which is easily proved using the diagram notation of the next section, is that
$\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n-1} 0 ; 0\right\rangle=(-1)^{n}\left\langle\alpha_{n} \alpha_{n-1} \ldots \alpha_{1} \mid j_{n-1} \ldots j_{2} j_{1} 0 ; 0\right\rangle$.

3. Graphical technique

The graphical technique we will use is a simple extension of the one described by Brink and Satchler (1968), which is itself a modification of the scheme given by Yutsis et a! (1962). Brink and Satchler's technique is based on the representation of the $3 j$ symbol by a diagram:

$$
\left(\begin{array}{ccc}
j^{\prime} & j^{\prime \prime} & j \tag{3.1}\\
m^{\prime} & m^{\prime \prime} & m
\end{array}\right)=\underbrace{+}_{i=i^{\prime} m^{\prime}}=i_{j m}^{j m}
$$

The sign on the node gives the order in which the angular momentum symbols are to be read-counterclockwise if + , clockwise if - . A line by itself represents a delta function, while a line with an arrow on it represents a phase factor:

$$
\begin{align*}
& \text { jm } j^{\prime} m^{\prime} \\
& \xrightarrow{j m} \quad j^{j^{\prime} m^{\prime}}=\delta_{i j^{\prime}} \delta_{m m^{\prime}} \tag{3.2}\\
& =\delta_{i j^{\prime}} \delta_{m,-m^{\prime}} \cdot(-1)^{j-m} .
\end{align*}
$$

Where half-integral angular moments arise, the direction of the arrow is significant, but in the present work it is immaterial.

The joining of two lines implies that the m values are set equal and summed over, so that for example

Any distortion of a graph leaves its value unchanged, provided that a change of the orientation of lines at a node is accompanied by a change of sign at that node.

Let us now extend this notation a little. First, the factor $(2 j+1)^{1 / 2}$ which occurs in many formulae is represented by a solid triangle with its base attached to a line. More than one factor may occur, while negative powers are represented by attaching the point of the triangle to the line:

$$
\begin{align*}
& \frac{j m}{j^{\prime} m^{\prime}}=(2 j+1)^{1 / 2} \delta_{i j^{\prime}} \delta_{m m^{\prime}}, \tag{3.4}\\
& \underline{j m} j^{\prime} m^{\prime} \tag{3.5}\\
& =(2 j+1) \delta_{i j^{\prime}} \delta_{m m^{\prime}},
\end{align*}
$$

$$
\begin{equation*}
\stackrel{j m \quad j^{\prime} m^{\prime}}{ } \equiv(2 j+1)^{-1 / 2} \delta_{j j^{\prime}} \delta_{m m^{\prime}} . \tag{3.6}
\end{equation*}
$$

Using this notation we may for example write (3.3) as

The Wigner coefficient is now easily represented:

$$
\begin{align*}
\left\langle j^{\prime} j^{\prime \prime} m^{\prime} m^{\prime \prime} \mid j m\right\rangle & =(-1)^{j^{\prime}-j^{\prime \prime}+m}(2 j+1)^{1 / 2}\left(\begin{array}{ccc}
j^{\prime} & j^{\prime \prime} & j \\
m^{\prime} & m^{\prime \prime} & -m
\end{array}\right) \\
& =(-1)^{j^{\prime-}-j^{\prime \prime}+j} \tag{3.8}
\end{align*}
$$

Next we need symbols for the basic Cartesian-spherical transformation (1.2), and we shall take

to represent $\langle\alpha \mid 1 ; m\rangle$ and $\langle 1 ; m \mid \alpha\rangle$ respectively. The star can be added or removed by the rule

This corresponds to the equation

$$
\kappa^{2}\langle 1 ; m \mid \alpha\rangle=(-1)^{1-m}\langle\alpha \mid 1 ;-m\rangle .
$$

A line with two triangles and one star is equal to a line with no triangles:

corresponding to

$$
\left\langle 1 ; m^{\prime} \mid \alpha\right\rangle\langle\alpha \mid 1 ; m\rangle=\delta_{m m^{\prime}}
$$

and

$$
\sum_{m}\langle\alpha \mid 1 ; m\rangle\langle 1 ; m \mid \beta\rangle=\delta_{\alpha \beta} .
$$

We see that joining two Cartesian lines corresponds to setting the Cartesian subscripts equal and summing. Clearly the joining of a Cartesian to an angular momentum line is meaningless.

Then remembering that all quantum numbers are integral, we find that the α transformation coefficient can be represented by
$\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle=$

4. Manipulation of cs coefficients

Now we can use the notation introduced in § 3 to derive some formulae for the manipulation of cs coefficients.
4.1. Contraction of adjacent suffixes

$$
=\kappa^{2} \times--\xrightarrow{j_{r-1}} \quad j_{r+1}--\times(-1)^{j_{r}+j_{r+1}+1}\left[\frac{2 j_{r}+1}{2 j_{r-1}+1}\right]^{1 / 2}
$$

whence

$$
\begin{align*}
&\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle \delta_{\alpha_{r} \alpha_{r+1}} \\
&=\left\langle\alpha_{1} \ldots \alpha_{r-1} \alpha_{r+2} \ldots \alpha_{n} \mid j_{1} \ldots j_{r-1} j_{r+2} \ldots j_{n} ; m\right\rangle \kappa^{2}(-1)^{j_{r}+j_{r+1}+1} \\
& \times \delta_{j_{r-1} j_{r+1}}\left[\left(2 j_{r}+1\right) /\left(2 j_{r-1}+1\right)\right]^{1 / 2} . \tag{4.1}
\end{align*}
$$

4.2. Permutation of adjacent suffixes

(see Brink and Satchler, equation (7.37)) whence

$$
\begin{align*}
&(r, r+1)\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{n} ; m\right\rangle \\
&= \sum_{f}(-1)^{j_{r}+f}\left[\left(2 j_{r}+1\right)(2 f+1)\right]^{1 / 2}\left\{\begin{array}{ccc}
1 & j_{r-1} & j_{r} \\
1 & j_{r+1} & f
\end{array}\right\} \\
& \times\left\langle\alpha_{1} \ldots \alpha_{n} \mid j_{1} \ldots j_{r-1} f j_{r+1} \ldots j_{n} ; m\right\rangle . \tag{4.2}
\end{align*}
$$

This result is to be expected, since the transposition involves a simple recoupling of the basis vectors of the polyadic $A_{\alpha_{1}} B_{\alpha_{2}} \ldots Z_{\alpha_{n}}$.

A discussion of the implications of this formula to the symmetry of the cs coefficients with respect to permutation of Cartesian subscripts may be found in Stone (1975).

4.3. Inner and outer products

Consider the following expression:

$$
\begin{equation*}
\sum_{\alpha_{1} \ldots \alpha_{r} \beta_{1} \ldots \beta_{s}}\left\langle l_{1} \ldots l_{r} ; p \mid \alpha_{1} \ldots \alpha_{r}\right\rangle\left\langle k_{1} \ldots k_{s} ; q \mid \beta_{1} \ldots \beta_{s}\right\rangle\left\langle\alpha_{1} \ldots \alpha_{r} \beta_{1} \ldots \beta_{s} \mid j_{1} \ldots j_{t} ; m\right\rangle \tag{4.3}
\end{equation*}
$$

where $t=r+s$. In graphical notation, this expression is:

by repeated use of the orthogonality of $3 j$ symbols, equation (3.7).

Now we require the following relation, which is obtained using Brink and Satchler's equation (7.34):

$$
\begin{equation*}
\times\left[\left(2 j^{\prime}+1\right)\left(2 k^{\prime \prime}+1\right)\right]^{1 / 2} W\left(k^{\prime} 1 j j^{\prime \prime} ; k^{\prime \prime} j^{\prime}\right) . \tag{4.5}
\end{equation*}
$$

Use of this formula ($s-1$) times, and finally (3.8), yields:

$\sum l_{1} \ldots l_{r} ; p\left|\alpha_{1} \ldots \alpha_{r}\right\rangle\left\langle k_{1} \ldots k_{s} ; q \mid \beta_{1} \ldots \beta_{s}\right\rangle\left\langle\alpha_{1} \ldots \alpha_{r} \beta_{1} \ldots \beta_{s} \mid j_{1} \ldots j_{t} ; m\right\rangle$

$$
\begin{align*}
= & \prod_{\sigma=2}^{s}\left\{\left[\left(2 k_{\sigma}+1\right)\left(2 j_{r+\sigma-1}+1\right)\right]^{1 / 2} W\left(k_{\sigma-1} 1 j_{r} j_{r+\sigma} ; k_{\sigma} j_{r+\sigma-1}\right)\right\} \\
& \times \delta_{j_{1} l_{1}} \ldots \delta_{j r r}\left\langle j_{r} k_{s} p q \mid j_{t} m\right\rangle . \tag{4.6}
\end{align*}
$$

Thespecial cases $s=0$ and $s=1$ are covered by (4.6) if we interpret the null product as rity and write $k_{s}=q_{s}=0$ when $s=0$. The equation for $s=0$ merely expresses the mitarity of the transformation.
Using (4.6) we can now derive the following:
43.1. Inner products
$R_{\alpha_{1-\alpha_{t}}} T_{\alpha_{1} \ldots \alpha_{t}}=\sum\left\langle\alpha_{1} \ldots \alpha_{t} \mid l_{1} \ldots l_{t} ; p\right\rangle\left\langle\alpha_{1} \ldots \alpha_{t} \mid j_{1} \ldots j_{t} ; m\right\rangle R_{l_{1} \ldots l_{i} ; p} T_{j_{1} \ldots j ; m}$.
Since

$$
\left.\left|a_{1} \ldots \alpha_{t}\right| l_{1} \ldots l_{t} ; p\right\rangle=\left\langle l_{1} \ldots l_{t} ; p \mid \alpha_{1} \ldots \alpha_{t}\right\rangle^{*}=\kappa^{2 t}(-1)^{l_{t}-p}\left\langle l_{1} \ldots l_{t} ;-p \mid \alpha_{1} \ldots \alpha_{t}\right\rangle, \text { (4.8) }
$$

(as can be shown inductively from equation (1.1)) this becomes

$$
\begin{align*}
R_{a_{1} \ldots \alpha_{t}} T_{\alpha_{1} \ldots \alpha_{t}} & =\sum \delta_{l_{1 j 1}} \delta_{l_{2 j 2}} \ldots \delta_{l_{j j i}-p, m} \delta^{2 z}(-1)^{l_{t}-p} R_{l_{1} \ldots l_{t ; p}} T_{j_{1} \ldots j t ; m} \\
= & \sum_{j_{1} \ldots j_{t}}\left(\kappa^{2}\right)^{t+j_{t}} R_{j_{1} \ldots j_{t}} \cdot T_{j_{1} \ldots j,} \tag{4.9}
\end{align*}
$$

where the phase factor in the last term arises from the different definitions of the scalar product used by Fano and Racah and by Condon and Shortley.
4.3.2. Non-scalar inner products. If $R_{\alpha_{1} \ldots \alpha_{r}}=T_{\alpha_{1} \ldots \alpha_{1} \ldots \beta_{s}} S_{\beta_{1} \ldots \beta_{s}}$, the spherical components of R are given in terms of those for T and S by

$$
\left.\begin{array}{rl}
R_{l_{1} \ldots l_{; ~} ;}= & \sum_{j k m q}
\end{array} \quad\left\langle l_{1} \ldots l_{;} ; p \mid \alpha_{1} \ldots \alpha_{r}\right\rangle\left\langle\alpha_{1} \ldots \alpha_{r} \beta_{1} \ldots \beta_{s} \mid j_{1} \ldots j_{t} ; m\right\rangle\right)
$$

(using (4.6) and (4.8)) and since

$$
\begin{equation*}
\langle a b \alpha-\beta \mid c \gamma\rangle=[(2 c+1) /(2 a+1)]^{1 / 2}(-1)^{2 b-\beta+c-a}\langle c b \gamma \beta \mid a \alpha\rangle \tag{4.11}
\end{equation*}
$$

we get

$$
\begin{align*}
R_{l_{1} \ldots l_{r} ; p}=\kappa^{2 s} & \sum_{j k}(-1)^{j_{t}-k_{s}-l_{l}}\left[\left(2 j_{t}+1\right) /\left(2 l_{r}+1\right)\right]^{1 / 2} \\
& \times \prod_{\sigma=2}^{s}\left\{\left[\left(2 k_{\sigma}+1\right)\left(2 j_{r+\sigma-1}+1\right)\right]^{1 / 2} W\left(k_{\sigma-1} 1 l_{r} j_{r+\sigma} ; k_{\sigma} j_{r+\sigma-1}\right)\right\} \\
& \times\left(T_{l_{1} \ldots l_{r++1 \ldots j}} \times S_{k_{1} \ldots k}\right)_{l_{r p}} \tag{4.12}
\end{align*}
$$

An equivalent expression is

$$
\begin{align*}
R_{l_{1} \ldots l_{; p p}}=\kappa^{2 s} & \sum_{j k}(-1)^{i_{1}-k_{s}-l_{r}}\left(T_{l_{1} \ldots l_{j r+1 \ldots j_{t}}} \times S_{k_{1} \ldots k_{s}} l_{l_{r p}}\right. \\
& \quad \times \prod_{\sigma=1}^{s}\left\{\left[\left(2 k_{\sigma}+1\right)\left(2 j_{r+\sigma}+1\right)\right]^{1 / 2} W\left(k_{\sigma-1} 1 l_{r r_{r+\sigma}} ; k_{\sigma} j_{r+\sigma-1}\right)\right\} \tag{4.13}
\end{align*}
$$

since

$$
W\left(01 l_{r} j_{r+1} ; 1 j_{r}\right)=\delta_{j r_{2}}\left[3\left(2 l_{r}+1\right)\right]^{-1 / 2}
$$

Similarly, if $S_{\beta_{1} \ldots \beta_{s}}=R_{\alpha_{1} \ldots \alpha_{r}} T_{\alpha_{1} \ldots \alpha_{n} 1 \ldots \beta_{s}}$, then

$$
\begin{aligned}
S_{k_{1} \ldots k_{s} ; q}=\sum_{j l m p} & \left\langle k_{1} \ldots k_{s} ; q \mid \beta_{1} \ldots \beta_{s}\right\rangle\left\langle\alpha_{1} \ldots \alpha_{r} \mid l_{1} \ldots l_{r} ; p\right\rangle \\
& \times\left\langle\alpha_{1} \ldots \alpha_{r} \beta_{1} \ldots \beta_{s} \mid j_{1} \ldots j_{z} ; m\right\rangle R_{l_{1} \ldots l_{r} ; p} T_{j 2 \ldots j ; m}
\end{aligned}
$$

(mere $t=r+s$)

$$
\begin{align*}
= & \kappa^{2 r} \sum_{j}(-1)^{j_{r}-p}\left(j_{r} k_{s}-p q \mid j_{r} m\right) R_{j_{1} \ldots j_{r} ; p} T_{j_{1} \ldots j_{i} ; m} \\
& \times \prod_{\sigma=2}^{s}\left\{\left[\left(2 k_{\sigma}+1\right)\left(2 j_{r+\sigma-1}+1\right)\right]^{1 / 2} W\left(k_{\sigma-1} 1 j_{r} j_{r+\sigma} ; k_{\sigma} j_{r+\sigma-1}\right)\right\} \\
= & \kappa^{2 r} \sum_{j}(-1)^{j_{r}+k_{s}+j_{i}}\left(R_{j_{1} \ldots j_{r}} \times T_{j_{1} \ldots j}\right)_{k_{s q}} \\
& \times \prod_{\sigma=2}^{s}\left\{\left[\left(2 k_{\sigma}+1\right)\left(2 j_{r+\sigma-1}+1\right)\right]^{1 / 2} W\left(k_{\sigma-1} 1 j_{r} j_{r+\sigma} ; k_{\sigma} j_{r+\sigma-1}\right)\right\} . \tag{4.14}
\end{align*}
$$

43.3. Outer products. If $T_{\alpha_{1} \ldots \alpha_{\beta} \beta_{1} \ldots \beta_{s}}=R_{\alpha_{1} \ldots \alpha_{r}} S_{\beta_{1} \ldots \beta_{s}}$, then

$$
\begin{align*}
T_{h-j ; i ; m}=\sum_{k p q} & \left\langle j_{1} \ldots j_{t} ; m \mid \alpha_{1} \ldots \alpha_{r} \beta_{1} \ldots \beta_{s}\right\rangle\left\langle\alpha_{1} \ldots \alpha_{r} \mid l_{1} \ldots l_{r} ; p\right\rangle \\
& \times\left\langle\beta_{1} \ldots \beta_{s} \mid k_{1} \ldots k_{s} ; q\right\rangle R_{t_{1} \ldots l_{r ; p}} S_{k_{1} \ldots k_{s} ; q} \\
= & \sum_{k}\left(R_{j_{1} \ldots j_{r}} \times S_{k_{1} \ldots k_{s}}\right)_{j_{i m}} \\
& \times \prod_{\sigma=2}^{s}\left\{\left[\left(2 k_{\sigma}+1\right)\left(2 j_{r+\sigma-1}+1\right)\right]^{1 / 2} W\left(k_{\sigma-1} 1 j_{r} j_{r+\sigma} ; k_{\sigma} j_{r+\sigma-1}\right)\right\} . \tag{4.15}
\end{align*}
$$

Réerences

Bink GM and Satchler G R 1968 Angular Momentum (Oxford: Clarendon Press)
Condon E U and Shortley G H 1935 The Theory of Atomic Spectra (Cambridge: University Press)
Coope J A R 1970 J. Math. Phys. 11 1591-612
Coope J A R and Snider R F 1970 J. Math. Phys. 11 1003-17
Coope J A R, Snider R F and McCourt F R 1965 J. Chem. Phys. 43 2269-75
Fano U and Racah G 1959 Irreducible Tensorial Sets (New York: Academic Press)
Stone A J 1975 Molec. Phys. 29 1461-71
Yussis A P, Levinson I B and Vanagas V V 1962 The Theory of Angular Momentum (Jerusalem: Israel
Program for Scientific Translations)

