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Received 7 Ap14 1975, in final form 18 July 1975 

Abstract. In a previous paper, a standard transformation was proposed for expressing 
Cartesian tensors and tensor expressions in spherical form, and vice versa. In this paper 
some properties of the transformation coefficients are derived. A recursion formula is, 
given, which provides a simple means of generating the coefficients from those of the next 
rank below. The coefficients (al . . . a,,ljl . . . j,, ; m) are tabulated for n =S 4, m = 0 and for 
n = 5,  j ,  = 0. Another recursion formula gives the coefficients for m # 0 in terms of those 
for m = 0. A graphical method is used to derive formulae for manipulating the coe5cients, 
and formulae are given for handling products of tensors, contracted or uncontracted. 

1. Introduction 

Itiswell-known that a Cartesian tensor of rank greater than one can be reduced into 
several spherical components (e.g. Fano and Racah 1959). Depending on the nature of 
addation, one or the other of these forms may be more suitable, and it is therefore 
convenient to have a standard transformation for converting a tensor, or a tensor 
Wesion, from one form to the other. In a previous paper (Stone 1975) Cartesian- 
spherical (a) transformation coefficients were defined by considering a ‘polyadic’ 
&Be.. .Zen. By transforming each of the vectors in this expression to spherical form, 
and then coupling the spherical vectors together from left to right, one arrives at a 
m i v e  definition for the transformation coefficient: 

Here is a phase factor, which is 1 if Fano and Racah’s (1959) phase convention is 
%,or -i for Condon and Shortley’s (1935). The spherical components Tjl ...j,,; m 
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and conversely 

(1.4) 

where 

G1.. .in; mla,. . . an)=(al . .  . anIjl . .  . j n ;  m)*, (1.5) 
so that the transformation is unitary. The subscripts jl, j 2  . . .in-, are (someha) 
required to distinguish between different spherical tensors with the same j,,; theymh 
dropped where no ambiguity results. j l  is always 1, but is included in the notation for 
completeness and for convenience in some formulae. 

Some applications of this transformation have been suggested elsewhere (Stone 
1975), and in this paper I shall examine some of its mathematical properties. In 8 2, wo 
recurrence relations are derived which make the computation of the mfiienb 
somewhat simpler than the direct use of (l.l), while in § 3 a graphical method 
described for handling the coefficients. This is used in § 4 to derive some formulae for 
manipulating the coefficients, particularly in relation to products of tensors, contracted 
or uncontracted. The need for these can be seen by considering a tensor quantitysuch 
as C, = AQsyBs, This is a vector, and transforms into a spherical tensor C,, of rank 1; 
while if we consider the special case where A and B are symmetric and traceless, they 
transform into spherical tensors As,, and BZm,, of ranks 3 and 2 respectively. However, 
the tensor C,, is not identical with the tensor (A3XB2)lm =(32m'm"11m)AsmrB~, 
obtained by coupling A3,, and BZm,, together, and attempts to make these expressions 
identical would remove the unitarity of the transformation. The results of 4 4 show that 
in fact 

Previous workers (Coope er al 1965, Coope and Snider 1970, Coop 1970) 
investigated the relationship between Cartesian tensors and their irreducible spherical 
components, but preferred to work in Cartesian forms throughout. If it is requiredto 
follow their approach of projecting out of a Cartesian tensor A,,,,,,, anothermsia 
tensor (of the same rank) corresponding to a given spherical component, this can be 
achieved using the transformation described here: 

(1.6) 

Indeed the jn  component can be embedded in a Cartesian tensor of any rank dBj*: 

. l a '  An 
where i; . . . j ; ,  can be chosen in several ways, in general, provided that l n , - b  
example is the well-known relationship between the antisymmetric pa t  of a 
rank tensor and a vector: 
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Nowthe second term of this expression is like the definition of the cs coefficient except 
that(a,ll; m”) has been replaced by (anll;  m”+ 1)[2-m”(m”+ l)]”’. Let us write this 
last expression as 

C (a$; mn‘+ 1)[2 - mfft(m’ff + i)]1/2tjm-rmF, 
me 

= 2 (a,,ll; mrff+1)[”m‘f‘(m‘f’+1)]‘’2(1; m‘’‘l1; m”) 
mm 

=(~nI-f+Il; mf’), (2.3) 

oC’(a3I1; m)=ars(arI-f*Il; m>- (2.4) 

&re j+ is the usual angular momentum shift operator. It is convenient to introduce 
moperators 2:), defined by 

($r) 
z could be defined similarly but will not be needed.) Using (1.2) in the form 
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3:) on expressions such as Sa,, is now easily found: 

$:)saIQz =$h“ c ialiQz = i€&6al&, 
b bc (2.7) 

and one finds also that 
vh“+$3sa14 = 0, 
~ ~ ) + $ h ~ ) + $ h ~ ) 3 ~ ~ , ~ ~ ~ ~  = 0. (2.8) 

One should perhaps emphasize that 9:) is not a respectable quantum mechanic;ll 
operator but merely a convenient mathematical shorthand. 

Returning to (2.2), we now treat the first term in the same way as fie a 
expression of (2.1). By repetition we eventually obtain a sum of terms: 

[ jn( jn+ 1) - m(m * l)I1”(al . . . anljl . . . in ; m * 1) 

= r $:)(al . . . antil . . .in; m) =$*(a1 . . . anljl . . . jn; m), (2.9) 

where 
n 

$*= c $2). 
r = l  

As an example of this formula we may obtain the (aP112; m), m >O, from (a8112;0), 
which is shown below to be equal to - (~’/d6)[32,2,  -aaB]. We have 

./6( I 12; 1) = (&’ + $!,?)( - ~’ /d6) [3Qp - Sa,3] 

= (- ~ ’ / d 6 ) [  - 3( ia  + ija)iS - 32, (iS +ij$)], 

so that 

(2.10) 
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-iom for the ( a 1  . . . ( Y n I j l .  . .in; 0) for n 6 4 and for n = 5, j s  = 0 have been 
this formula, and checked against the results of a computer program 

&devaluites the coefficients directly using (1.1). The results are given in table 1. For 

TsMe 1. 
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n = 5 the number of coefficients becomes rather large, but the six scalars are p a r t i d a ] ~  
useful-for example in obtaining spherical averages of tensor properties, which are 
conveniently expressed in the form 

(2.14 

One can see from these results, as one would expect, that (a1 . . . a,& . . .in; 0) is 
independent of the axis system if jn  = 0, and also that a coefficient in which one of the 
intermediate jr  is zero can be written as a product of simpler coefficients: 

(a l . .  . ar . .  . anljl . .  . jr - lOjr+l . .  . j , ,; m) 

= (a1 . - . anb1 . in; m)aj,oa,oO'l . . .in; mlP1 . . . Pn>Tsl ...fin- 
3Bm 

=(a1 . . . ar(jl . .  . j r - lO;  O)(ar+, . . . anljr+l.. .in; m). (2.15) 

A result which is less apparent, but which is easily proved using the diagram notation of 
the next section, is that 

(a1 . . . a,(jl. . . jn-lO; 0) = (- ~)~(a~a,,-~ . . . alljn-l . . . j2j10; 0). (2.16) 

3. Graphical technique 

The graphical technique we will use is a simple extension of the one described by Brink 
and Satchler (196% which is itself a modification of the scheme given by YUtsi5 ef al 
(1962). Brink and Satchler's technique is based on the representation of the 3j5Pboi 
by a diagram: 

\i.m'' \ im 
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*sign on the node gives the order in which the angular momentum symbols are to be 
mMunterclockwise if +, clockwise if -. A line by itself represents a delta 
fandon, while a line with an arrow on it represents a phase factor: 

c - 
c 

jm j‘m’ 
- 6,&,-,’ . (- l)j-m. 

Where half-integral angular moments arise, the direction of the arrow is significant, but 
in &e present work it is immaterial. 

ne joining of two lines implies that the m values are set equal and summed over, so 
that for example 

i’” = (2 j+ 1 ) - ~ 6 ~ ~ ~ 6 ~ ~ ~ .  (3.3) 

Any distortion of a graph leaves its value unchanged, provided that a change of the 
orientation of lines at a node is accompanied by a change of sign at that node. 

Let us now extend this notation a little. First, the factor (2 j  + 1)”’ which occurs in 
many formulae is represented by a solid triangle with its base attached to a h e .  More 
than one factor may occur, while negative powers are represented by attaching the point 
of the triangle to the line: 

jm j’m’ =(2j+1) 1/2 Sjj ,Smm,, 

Us4 this notation we may for example write (3.3) as 

jm j’m’ 

newigner coefficient is now easily represented: 

(3.4) 

(3.7) 
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Next we need symbols for the basic Cartesian-spherical transformation ( 1 4 ,  a d  we 
shall take 

L Y A  lm *A l m  
w U 

to represent (all; m) and ( 1 ;  mla) respectively. The Star can be added or removaby 
the rule 

2~ lm - ( r A  ,lm 
u U '  . (3.9) 

- K 

This corresponds to the equation 

A line with two triangles and one star is equal to a line with no triangles: 

Im' Im - - v u  
Im' LLY ~ lm , (3.10) 

(3.11) 

corresponding to 

We see that joining two Cartesian lines corresponds to setting the Cartesian subscrip& 
equal and summing. Clearly the joining of a Cartesian to an angular momentum line 
is meaningless. 

Then remembering that all quantum numbers are integral, we find that the 
transformation coefficient can be represented by 

(al . . . anljl . . . j,; m) = 

(3.12) 

4. Manipulation of cs coeffiaents 

Now we can use the notation introduced in 0 3 to derive some formulae for 
manipulation of cs coefficients. 

tbe 
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lr-1 l r  jrd 

whence 
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(see Brink and Satchler, equation (7.37)) whence 

(r, r+ l ) (a l . .  . anljl.. .in; m> 

(4.2) x ( a l  . . . anljl . . .jl-lfjr+l . . .in; n). 

This result is to be expected, since the transposition involves a simple recoupling ofthe 
basis vectors of the polyadic A,,&. . . Zan. 

A discussion of the implications of this formula to the symmetry of the cs meffi&B 
with respect to permutation of Cartesian subscripts may be found in Stone (1975). 

4.3. Inner and outer products 

Consider the following expression: 

0 

0 11 12 

-L + 1  
k s q  

X Sjilzaj212 . * . aj,i, 

by repeated use of the orthogonality of 3j  symbols, equation (3.7). 

(4.4) 
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Now we require the following relation, which is obtained using Brink and Satchler’s 
*tion (7.34): 

I i 
J 

~ [ ( 2 j ’ +  1)(2k”+ 1)]1’2 W(k’1jj”; kf‘j’). (4.5) 

Use of this formula (s - 1) times, and finally (3.8)’ yields: 

~ { l * . . . ~ r ; p l ~ l . . . a r ) ( k l . . .  k,;qJPl  . . . P  ,)(a1 . . . a r P l . . - P s l j l . . . j t ; m j  
S 

= {[(2k0 + 1)(2jr+0-1+ l)]”*W(kr--11jrjr+u; k j r + m - d }  
0=2 

XSjili . . . ~j~,UrkspqIjtm)- (4.6) 

!sPzChl cases s = 0 and s = 1 are covered by (4.6) if we interpret the null product as 
““py ancl write k, = q, = 0 when s = 0. The equation for s = 0 merely expresses the 
@‘“of the transformation. 

(4.6) we can now derive the following: 

‘ a ’ ’ * *a&. . .  I t ; p ) = ( l l . .  . lI;plal ., . CY,)* = ~ ~ ‘ ( - 1 ) ‘ ~ - ~ ( l ~ .  . . It; - p I a l . .  . at), (4.8) 
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(4.9) 

where the phase factor in the last term arises from the different definitions of the scalar 
product used by Fano and Racah and by Condon and Shortley. 

4.3.2. Non-scalar innerproducts. If Ra1.,.,,= ~al...a~i...~,S~l...~~, the spherical mmp. 
nents of R are given in terms of those for T and S by 

(using (4.6) and (4.8)) and since 

we get 

(4.12) 

An equivalent expression is 
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=E (Rjl ...jPx Ski ... $j,m 
k 

(4.14) 

(4.15) 
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